Predictive Hacks

Transfer Learning on Images with Tensorflow 2

image model

In this tutorial, we will provide you an example of how you can build a powerful neural network model to classify images of cats and dogs using transfer learning by considering as base model a pre-trained model trained on ImageNet and then we will train additional new layers for our cats and dogs classification model.

The Data

We will work with a sample of 600 images from the Dogs vs Cats dataset, which was used for a 2013 Kaggle competition.

import tensorflow as tf
from tensorflow.keras.models import  Sequential, Model, load_model
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dense, Flatten, Dropout
import numpy as np
import os
import pandas as pd
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns



# load the train validation and test datasets
images_train = np.load('data/images_train.npy') / 255.
images_valid = np.load('data/images_valid.npy') / 255.
images_test = np.load('data/images_test.npy') / 255.

labels_train = np.load('data/labels_train.npy')
labels_valid = np.load('data/labels_valid.npy')
labels_test = np.load('data/labels_test.npy')

Output:

600 training data examples
300 validation data examples
300 test data examples
# Display a few images and labels

class_names = np.array(['Dog', 'Cat'])

plt.figure(figsize=(15,10))
inx = np.random.choice(images_train.shape[0], 15, replace=False)
for n, i in enumerate(inx):
    ax = plt.subplot(3,5,n+1)
    plt.imshow(images_train[i])
    plt.title(class_names[labels_train[i]])
    plt.axis('off')

Load the Base Model

Our base model will be the pre-trained MobileNet V2 model.

base_model = tf.keras.applications.MobileNetV2()

Use the pre-trained model as a feature extractor

We will remove the final layer of the network and replace it with new, untrained classifier layers for our task. We will create a new model that has the same input tensor as the MobileNetV2 model, and uses the output tensor from the layer with name global_average_pooling2d_6 as the model output.

feature_extractor = Model(inputs=base_model.input, 
                          outputs=base_model.get_layer('global_average_pooling2d_6').output)
 

Build the Final Model

The final model will:

  • Start with the feature extractor model that we built above.
  • We will add a dense layer with 32 units and ReLU activation function.
  • Then a drop out layer (50%).
  • The final layer is a Dense Layer of a 1 neuron and the the activation function is the sigmoid.
final_model = Sequential([
                    feature_extractor,
                    Dense(32, activation='relu'),
                    Dropout(0.5),
                    Dense(1, activation='sigmoid')
                    ])

final_model.summary()
 

Output:

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
model_1 (Model)              (None, 1280)              2257984   
_________________________________________________________________
dense_2 (Dense)              (None, 32)                40992     
_________________________________________________________________
dropout_1 (Dropout)          (None, 32)                0         
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 33        
=================================================================
Total params: 2,299,009
Trainable params: 2,264,897
Non-trainable params: 34,112

Freeze the weights of the pre-trained model

We will freeze the weights of the pre-trained feature extractor, so that only the weights of the new layers we have added will change during the training. Finally, we will compile the final model.

final_model.layers[0].trainable = False

final_model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
              loss = 'binary_crossentropy',
              metrics = ['acc'])

final_model.summary()
 

Output:

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
model_1 (Model)              (None, 1280)              2257984   
_________________________________________________________________
dense_2 (Dense)              (None, 32)                40992     
_________________________________________________________________
dropout_1 (Dropout)          (None, 32)                0         
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 33        
=================================================================
Total params: 2,299,009
Trainable params: 41,025
Non-trainable params: 2,257,984

Notice how the Non-trainable params changed from 34,112 to 2,257,984

Train and Evaluate the Model

We will train the model using EarlyStopping.

earlystopping = tf.keras.callbacks.EarlyStopping(patience=2)
history_frozen_new_model = final_model.fit(images_train, labels_train, epochs=10, batch_size=32,
                                                validation_data=(images_valid, labels_valid), 
                                                callbacks=[earlystopping])

Output:

Train on 600 samples, validate on 300 samples
Epoch 1/10
600/600 [==============================] - 164s 273ms/sample - loss: 0.5017 - acc: 0.7517 - val_loss: 0.3234 - val_acc: 0.8467
Epoch 2/10
600/600 [==============================] - 155s 259ms/sample - loss: 0.3085 - acc: 0.8700 - val_loss: 0.2127 - val_acc: 0.8967
Epoch 3/10
600/600 [==============================] - 154s 256ms/sample - loss: 0.2082 - acc: 0.9083 - val_loss: 0.1998 - val_acc: 0.9167
Epoch 4/10
600/600 [==============================] - 153s 255ms/sample - loss: 0.2168 - acc: 0.9167 - val_loss: 0.1707 - val_acc: 0.9467
Epoch 5/10
600/600 [==============================] - 149s 249ms/sample - loss: 0.1765 - acc: 0.9367 - val_loss: 0.1550 - val_acc: 0.9500
Epoch 6/10
600/600 [==============================] - 152s 253ms/sample - loss: 0.2027 - acc: 0.9183 - val_loss: 0.1293 - val_acc: 0.9567
Epoch 7/10
600/600 [==============================] - 156s 260ms/sample - loss: 0.1557 - acc: 0.9350 - val_loss: 0.1828 - val_acc: 0.9300
Epoch 8/10
600/600 [==============================] - 155s 258ms/sample - loss: 0.1088 - acc: 0.9633 - val_loss: 0.1298 - val_acc: 0.9600

Plot the learning curves

plt.figure(figsize=(15,5))
plt.subplot(121)
try:
    plt.plot(history_frozen_new_model.history['accuracy'])
    plt.plot(history_frozen_new_model.history['val_accuracy'])
except KeyError:
    plt.plot(history_frozen_new_model.history['acc'])
    plt.plot(history_frozen_new_model.history['val_acc'])
plt.title('Accuracy vs. epochs')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='lower right')

plt.subplot(122)
plt.plot(history_frozen_new_model.history['loss'])
plt.plot(history_frozen_new_model.history['val_loss'])
plt.title('Loss vs. epochs')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Training', 'Validation'], loc='upper right')
plt.show() 

Evaluate the new model

new_model_test_loss, new_model_test_acc = final_model.evaluate(images_test, labels_test, verbose=0)
print("Test loss: {}".format(new_model_test_loss))
print("Test accuracy: {}".format(new_model_test_acc))

Output:

Test loss: 0.10817002788186074
Test accuracy: 0.9566666483879089

We got an accuracy of 96%. Not bad!

References:

[1] Coursera Customising your models with TensorFlow 2

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Leave a Comment

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

Python

Image Captioning with HuggingFace

Image captioning with AI is a fascinating application of artificial intelligence (AI) that involves generating textual descriptions for images automatically.

Python

Intro to Chatbots with HuggingFace

In this tutorial, we will show you how to use the Transformers library from HuggingFace to build chatbot pipelines. Let’s