This post is about COVID-19 and we will an example of how you can get the data of the daily “confirmed”, “recovered” and “death” cases by country. In essence, we will show you how you can have access to the data used by Johns Hopkins Report and you can easily run your own reports and analysis.
The coronavirus
package provides detailed information. Let’s give some examples of what reports we can generate. Notice, that the R-package is updated on a daily basis, so you have to re-install for the new data.
Let’s have a look at the column names of the coronavirus dataset:
# https://github.com/RamiKrispin/coronavirus devtools::install_github("RamiKrispin/coronavirus") #checks if there is data update on the Github version coronavirus::update_datasets(silence = TRUE) library(coronavirus) library(tidyverse) library(lubridate) data("coronavirus") str(coronavirus) head(coronavirus)
> str(coronavirus)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 3152 obs. of 7 variables:
$ Province.State: chr "" "" "" "Anhui" ...
$ Country.Region: chr "Japan" "South Korea" "Thailand" "Mainland China" ...
$ Lat : num 36 36 15 31.8 40.2 ...
$ Long : num 138 128 101 117 116 ...
$ date : Date, format: "2020-01-22" "2020-01-22" "2020-01-22" "2020-01-22" ...
$ cases : int 2 1 2 1 14 6 1 26 2 1 ...
$ type : chr "confirmed" "confirmed" "confirmed" "confirmed" ...
head(coronavirus)
#> Province.State Country.Region Lat Long date cases type
#> 1 Japan 36.0000 138.0000 2020-01-22 2 confirmed
#> 2 South Korea 36.0000 128.0000 2020-01-22 1 confirmed
#> 3 Thailand 15.0000 101.0000 2020-01-22 2 confirmed
#> 4 Anhui Mainland China 31.8257 117.2264 2020-01-22 1 confirmed
#> 5 Beijing Mainland China 40.1824 116.4142 2020-01-22 14 confirmed
#> 6 Chongqing Mainland China 30.0572 107.8740 2020-01-22 6 confirmed
Get the Top 10 Countries in Confirmed Cases
coronavirus %>% select(country = Country.Region, type, cases) %>% group_by(country, type) %>% summarise(total_cases = sum(cases)) %>% pivot_wider(names_from = type, values_from = total_cases) %>% arrange(-confirmed)%>%head(10)
country confirmed death recovered
<chr> <int> <int> <int>
1 Mainland China 80652 3070 55478
2 South Korea 7041 44 135
3 Italy 5883 233 589
4 Iran 5823 145 1669
5 France 949 11 12
6 Germany 799 NA 18
7 Others 696 6 40
8 Spain 500 10 30
9 Japan 461 6 76
10 US 417 17 8
Get the Daily and Aggregated Deaths
death_report<-coronavirus%>%filter(type=="death")%>%group_by(date)%>%summarise(Daily_Deaths=sum(cases))%>% ungroup()%>%mutate(Agg_Deaths=cumsum(Daily_Deaths)) death_report
Date | Daily_Deaths | Agg_Deaths |
1/22/2020 | 17 | 17 |
1/23/2020 | 1 | 18 |
1/24/2020 | 8 | 26 |
1/25/2020 | 16 | 42 |
1/26/2020 | 14 | 56 |
1/27/2020 | 26 | 82 |
1/28/2020 | 49 | 131 |
1/29/2020 | 2 | 133 |
1/30/2020 | 38 | 171 |
1/31/2020 | 42 | 213 |
2/1/2020 | 46 | 259 |
2/2/2020 | 103 | 362 |
2/3/2020 | 64 | 426 |
2/4/2020 | 66 | 492 |
2/5/2020 | 72 | 564 |
2/6/2020 | 70 | 634 |
2/7/2020 | 85 | 719 |
2/8/2020 | 87 | 806 |
2/9/2020 | 100 | 906 |
2/10/2020 | 107 | 1013 |
2/11/2020 | 100 | 1113 |
2/12/2020 | 5 | 1118 |
2/13/2020 | 253 | 1371 |
2/14/2020 | 152 | 1523 |
2/15/2020 | 143 | 1666 |
2/16/2020 | 104 | 1770 |
2/17/2020 | 98 | 1868 |
2/18/2020 | 139 | 2007 |
2/19/2020 | 115 | 2122 |
2/20/2020 | 125 | 2247 |
2/21/2020 | 4 | 2251 |
2/22/2020 | 207 | 2458 |
2/23/2020 | 11 | 2469 |
2/24/2020 | 160 | 2629 |
2/25/2020 | 79 | 2708 |
2/26/2020 | 62 | 2770 |
2/27/2020 | 44 | 2814 |
2/28/2020 | 58 | 2872 |
2/29/2020 | 69 | 2941 |
3/1/2020 | 55 | 2996 |
3/2/2020 | 89 | 3085 |
3/3/2020 | 75 | 3160 |
3/4/2020 | 94 | 3254 |
3/5/2020 | 94 | 3348 |
3/6/2020 | 112 | 3460 |
3/7/2020 | 98 | 3558 |
death_report%>%ggplot(aes(x=date, Agg_Deaths))+ geom_point()+geom_line()+ ggtitle("Aggregate Deaths of COVID-19")
Get the Daily Confirmed Cases of Italy
coronavirus%>%filter(Country.Region=="Italy", type=="confirmed")%>% group_by(date)%>%summarise(daily_cases=sum(cases))%>%ungroup()%>% mutate(agg_cases=cumsum(daily_cases))
date daily_cases agg_cases
<date> <int> <int>
1 2020-01-31 2 2
2 2020-02-07 1 3
3 2020-02-21 17 20
4 2020-02-22 42 62
5 2020-02-23 93 155
6 2020-02-24 74 229
7 2020-02-25 93 322
8 2020-02-26 131 453
9 2020-02-27 202 655
10 2020-02-28 233 888
11 2020-02-29 240 1128
12 2020-03-01 566 1694
13 2020-03-02 342 2036
14 2020-03-03 466 2502
15 2020-03-04 587 3089
16 2020-03-05 769 3858
17 2020-03-06 778 4636
18 2020-03-07 1247 5883
If we want also to make a chart:
coronavirus%>%filter(Country.Region=="Italy", type=="confirmed")%>% group_by(date)%>%summarise(daily_cases=sum(cases))%>%ungroup()%>% mutate(agg_cases=cumsum(daily_cases))%>% ggplot(aes(x=date, y=daily_cases))+geom_line()+geom_point()+ggtitle("Italy: Daily Confirmed Cases of COVID-19")
Updated
Our goal was to show how someone can get the COVID-19 data and run his/her own analysis. Since we gathered more data, let’s have a look at some reports.
Cumulative Cases
coronavirus%>%mutate(date=as.Date(date))%>%rename(Country=Country.Region)%>% filter(Country %in% c("Italy","US","Greece","Spain", "France", "United Kingdom", "Germany"), type=="confirmed")%>% group_by(date, Country)%>%summarise(Daily_Cases=sum(cases))%>%group_by(Country)%>%arrange(date)%>% mutate(Agg_Cases=cumsum(Daily_Cases))%>% ggplot(aes(x=date, y=Agg_Cases, col=Country))+geom_point()+geom_line()+ylab("Cumulative Cases")+theme_minimal()
Summary Table
cases_tb<-coronavirus%>%mutate(date=as.Date(date))%>%rename(Country=Country.Region)%>% filter(Country %in% c("Italy","US","Greece","Spain", "France", "United Kingdom", "Germany"), type=="confirmed")%>% group_by(date, Country)%>%summarise(Daily_Cases=sum(cases))%>%group_by(Country)%>%arrange(date)%>% mutate(Agg_Cases=cumsum(Daily_Cases), Diff=Daily_Cases/lag(Daily_Cases)-1)%>%arrange(desc(date))%>%slice(1)%>%select(date, Country, Agg_Cases, Yestrday_Case=Daily_Cases, Change_in_Daily_Cases=Diff) death_tb<-coronavirus%>%mutate(date=as.Date(date))%>%rename(Country=Country.Region)%>% filter(Country %in% c("Italy","US","Greece","Spain", "France", "United Kingdom", "Germany"), type=="death")%>% group_by(date, Country)%>%summarise(Daily_Cases=sum(cases))%>%group_by(Country)%>%arrange(date)%>% mutate(Agg_Cases=cumsum(Daily_Cases), Diff=Daily_Cases/lag(Daily_Cases)-1)%>%arrange(desc(date))%>%slice(1)%>%select(date, Country, Agg_Deaths=Agg_Cases, Yestrday_Deaths=Daily_Cases, Change_in_Daily_Deaths=Diff) final<-cases_tb%>%inner_join(death_tb, by = c("date", "Country"))%>%mutate(Death_Rate=Agg_Deaths/Agg_Cases) final
# A tibble: 7 x 9
# Groups: Country [7]
date Country Agg_Cases Yestrday_Case Change_in_Daily_Cas~ Agg_Deaths Yestrday_Deaths Change_in_Daily_Deat~ Death_Rate
<date> <chr> <int> <int> <dbl> <int> <int> <dbl> <dbl>
1 2020-03-29 France 40708 2603 -0.447 2611 294 -0.0813 0.0641
2 2020-03-29 Germany 62095 4400 -0.355 533 100 0.0989 0.00858
3 2020-03-29 Greece 1156 95 0 38 6 0.5 0.0329
4 2020-03-29 Italy 97689 5217 -0.127 10779 756 -0.150 0.110
5 2020-03-29 Spain 80110 6875 -0.0853 6803 821 -0.0273 0.0849
6 2020-03-29 United Kingd~ 19780 2468 -0.0386 1231 210 -0.192 0.0622
7 2020-03-29 US 140886 19408 -0.0208 2467 441 -0.00899 0.0175
Weekly New Cases
We have heard the term “flatten the curve”. In essence, we want the New Cases not to increase exponentially and of course, we prefer to see the new cases to decrease across time. Let’s have a look at the “Weekly Average New Cases“
coronavirus%>%filter(type=="confirmed", Country.Region %in% c("Italy","US","Greece","Spain", "France", "United Kingdom", "Germany"))%>% mutate(date=as.Date(date), weeks = floor_date(date, "weeks"))%>%group_by(Country.Region,weeks)%>% summarise(weekly_cases=sum(cases), avg_daily=round(sum(cases)/length(unique(date))))%>%rename(Country=Country.Region)%>%ggplot(aes(x=weeks, y=avg_daily, col=Country))+geom_line()+geom_point()+ylab("Weekly Average Cases")+theme_minimal()
Discussion
Since you have access to the daily cases of COVID-19 by Country, you can run your own analysis and projections about the progress of the virus. Would it be finally an epidemic, do you agree with the analysis of the Australian National University where based on their best case scenario 15 million people will eventually die from COVID-19?