Predictive Hacks

Hack: Columns From Lists Inside A Column in Pandas

columns from lists in column pandas
df=pd.DataFrame({'Name':['Billy','George'],'colA':[[[3,4],[3,9],[3,0],[2,1]],[[1,2],[3,5],[1,0],[0,1]]],
             'colB':[[[3,4,1,3,1],[1,2,2,2,1],[6,5,0,1,1],[1,2,1,1,1]],[[5,4,2,3,4],[5,1,2,2,5],[7,5,0,1,2],[4,2,1,1,3]]]})
     Name              colA                                colB
0   Billy  [[3, 4], [2, 1]]  [[3, 4, 1, 3, 1], [1, 2, 2, 2, 1]]
1  George  [[1, 2], [0, 1]]  [[5, 4, 2, 3, 4], [5, 1, 2, 2, 5]]

First Step: Flatten the lists

If in the columns we have list of lists we have to flatten them firtst.

df['colA']=df['colA'].apply(lambda x: [item for sublist in x for item in sublist])

df['colB']=df['colB'].apply(lambda x: [item for sublist in x for item in sublist])

df['colA']
0    [3, 4, 2, 1]
1    [1, 2, 0, 1]

Second Step: Create columns, add a prefix and drop the original

 df=pd.concat([pd.DataFrame(df.colA.tolist(), index= df.index).add_prefix('colA'),df,],axis=1).drop('colA',axis=1)

 df=pd.concat([pd.DataFrame(df.colB.tolist(), index= df.index).add_prefix('colB'),df,],axis=1).drop('colB',axis=1)
  colB0  colB1  colB2  colB3  colB4  colB5  colB6  colB7  colB8  colB9  \
0      3      4      1      3      1      1      2      2      2      1   
1      5      4      2      3      4      5      1      2      2      5   

   colA0  colA1  colA2  colA3    Name  
0      3      4      2      1   Billy  
1      1      2      0      1  George 

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Leave a Comment

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

python package
Python

How to Build Python Packages

In this tutorial, we will show you how to build Python Packages. Our goal is to build a Python package