Predictive Hacks

ggplot2 In Python using Plotnine

ggplot in python

If you are familiar with ggplot2 in R, you know that this library is one of the best-structured ways to make plots. We will show you how to create plots in python with the syntax of ggplot2, using the library plotnine.

Installation

# Using pip
$ pip install plotnine
      
# Or using conda
$ conda install -c conda-forge plotnine

Firstly, let’s import the libraries and create our dummy data.

import pandas as pd
import numpy as np
import plotnine as p9
import random

data = np.random.randint(1,10, size=300)
df = pd.DataFrame(data, columns=['variable'])
df['category']=random.choices(['A','B','C'],k=300)
df['variable2']=random.sample(range(10, 1000), 300)
df['variable3']=df['variable2'].apply(lambda x: x*random.random())
   variable category  variable2   variable3
0         3        A        747  356.282975
1         6        A        837  432.941801
2         2        A        941  195.533003
3         4        A        679  131.990057
4         7        A        912  696.910478

Now, Let’s create some basic plots using plotnine.

Histogram

p9.ggplot(df)+ p9.aes(x='variable')+p9.geom_histogram(binwidth=2)
Histogram

As you can see, it’s almost identical to ggplot. Let’s see some other basic examples.

Density Plot

p9.ggplot(df)+ p9.aes(x='variable') + p9.geom_density(fill="darkgrey")

Density Plot

Boxplot

p9.ggplot(df)+p9.aes(y='variable',x='category')+p9.geom_boxplot()+ p9.coord_flip()
Boxplot

Barchart

p9.ggplot(df)+p9.aes(x='category')+ p9.geom_bar()

Barchart

Scatterplot

p9.ggplot(df)+p9.aes(y='variable3',x='variable2')+p9.geom_point(size=4)

scatterplot
p9.ggplot(df)+p9.aes(y='variable3',x='variable2',color='category')+p9.geom_point(size=4)

scatterplot

Violin Plot

p9.ggplot(df)+p9.aes(y='variable2',x='category',fill='category')+ p9.geom_violin(scale = "width")

voilin plot

As you can see, the syntax is almost identical to ggplot2 in R. Be sure to check out dplyr pipes in python.

Share This Post

Share on facebook
Share on linkedin
Share on twitter
Share on email

Leave a Comment

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

Python

Image Captioning with HuggingFace

Image captioning with AI is a fascinating application of artificial intelligence (AI) that involves generating textual descriptions for images automatically.

Python

Intro to Chatbots with HuggingFace

In this tutorial, we will show you how to use the Transformers library from HuggingFace to build chatbot pipelines. Let’s