When we build predictive models, we use to remove the high correlated variables (multi-collinearity). The point is to keep on of the two correlated variables. Let’s see how we can do it in R by taking as an example the independent variables of the iris
dataset.
Get the correlation matrix of the IVs of iris dataset:
df<-iris[, c(1:4)] cor(df)
Output:
Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411 Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259 Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654 Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
As we can see there are some variables that are highly correlated. Let’s say that we want to remove all the variables which have an absolute correlation greater than a threshold, let’s say 80% in our case. First, we need to get the correlation of each pair but counting each pair once.
Var1<-NULL Var2<-NULL Correlation<-NULL for (i in 1:ncol(df)) { for (j in 1:ncol(df)) { if (i>j) { Var1<-c(Var1,names(df)[i]) Var2<-c(Var2,names(df)[j]) Correlation<-c(Correlation, cor(df[,i], df[,j])) } } } output<-data.frame(Var1=Var1, Var2=Var2, Correlation=Correlation) output
Output:
Var1 Var2 Correlation 1 Sepal.Width Sepal.Length -0.1175698 2 Petal.Length Sepal.Length 0.8717538 3 Petal.Length Sepal.Width -0.4284401 4 Petal.Width Sepal.Length 0.8179411 5 Petal.Width Sepal.Width -0.3661259 6 Petal.Width Petal.Length 0.9628654
Let’s remove one of the two variables for each pair which has an absolute correlation greater than 80%.
threshold<-0.8 exclude<-unique(output[abs(output$Correlation)>=threshold,'Var2']) reduced<-df[, !names(df)%in%exclude] head(reduced)
Output:
Sepal.Width Petal.Width 1 3.5 0.2 2 3.0 0.2 3 3.2 0.2 4 3.1 0.2 5 3.6 0.2 6 3.9 0.4
Let’s also get the correlation of the reduced data frame.
cor(reduced)
Output:
Sepal.Width Petal.Width Sepal.Width 1.0000000 -0.3661259 Petal.Width -0.3661259 1.0000000
As we can see we removed the correlated variables and we left with 2 IVs instead of 4.